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ABSTRACT 

For a family of dynamical properties, knowing that the condition holds 

for order 4 implies that it holds for all orders. Here we establish this 

for the properties minimal self-joinings, simplicity and for cartesian- 

disjointness. 
An application of the first yields an analog to Kalikow's cele- 

brated result that for rank-1 transformations, 2-fold mixing implies 3-fold 

mixing. Via a joining argument we show that for any rank-1 gD-action, 

4-fold mixing implies mixing of all orders. Indeed, the rank need only be 

sufficiently close to 1 for the implication to hold and so this result is new 

even when the acting group is Z. 

By means of limit-joinings, we settle affirmatively an old open 

question by establishing, for any M, that M-fold R6nyi-mixing implies 

M-fold mixing. 

In troduct ion  

Recent years have shown arguments using joinings to be useful in approaching the 

"mixing ==* multiple mixing" problem of Rohlin. Joinings techniques, when they 

are applicable, are at once easier and more general than the traditional "coding 

arguments" of ergodic theory. Subsequent to the results described in this article, 

which date from 1987, Bernard Host proved a singular-spectrum independence 

result [Ho], and Shahar Mozes [M] recently established that for actions of certain 

non-Abelian Lie groups, mixing implies mixing of all orders. 
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In this article we prove that for a family of zero-entropy zD-actions, 4-fold 

mixing implies oo-fold mixing. The Fundamental Lemma appears in §1. "R6nyi- 

mixing implies mixing" commences §2, followed by our principal result, theorem 

2.8 and its corollary. 

GENERAL NOTATION Agree to let the expression a ~ b indicate that expres- 

sion b defines the symbol a. For reals a and b let [a .. b) denote the half-open 

"interval of integers" [a, b) N Z, with analogous notation for closed and open in- 

tervals. N is a synonym for [0 .. oo). Use # A  for the cardinality of the set A. All 

sets and functions are tacitly measurable. 

Our context is that of a (measure-preserving) transformation T of a Lebesgue 

probability space (X, X, #). To indicate that T acts on this space we may write 

(T: X , X , p )  or (T: X ,p )  or simply (T: V). Let C(T) denote the cen t ra l i ze r  

of T; the semigroup of transformations which commute with T. 

Let field be a synonym for "sigma-algebra". As usual, if .A and B are the fields 

of two spaces then the symbol .A x B denotes the smallest field on the product 

space which contains all rectangles A x B. 

Suppose that {Zk}k are subfields of X. They are (collectively) i n d e p e n d e n t  

with respect to p, written 

±"{Zk}k or just ±{Zk}k 

if, whenever {Ak}k are sets with Ak • Zk, then #(Nk Ak) = Ilk #(Ak). 

JOININGS NOMENCLATURE For the standard joinings definitions, see [J,R] or 

[K] or [K,T]; our notation is from the latter. Use J(T, S) for the space of joinings 

between T and S and let JErg(T, S) be its subset of ergodic joinings. Given factor 

maps 

(T: X,X,l~) , (R: Z,Z , ( )  ~ -  (S: Y ,y ,v ) ,  

let # xz v • J(T, S) denote the relative independent joining of T with S relative 

to the two factor maps. 

NOTATION FOR COUNTABLE JOININGS It is occasionally convenient to talk 

about joinings of countably many maps. Agree to let @ denote cartesian prod- 

uct: of transformations, spaces, fields, and measures. For typographical reasons, 

we use [ to mean "restricted to"; thus ([y and ( [ y  are synonyms. 

Fix a K • N U { ~ }  and consider a list of transformations (Tk: Xk, X'k, Pk) for 

k • [0 .. K).  A joining ~ • $({Tk}k) is a (@k Tk)-invariant probability measure 
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on ( •k  Xk, @k Xk) such that each ([Xk = #k. Suppose ~ • J({Tk}k ) and I is 

some subset of the index set [0 .. K),  say, of cardinality M. Then ~[I shall denote 

t he  M-fo ld  marg ina l  of ~ upon I. That is, 

 [V EIXk, 
which is an element of J((Tk ]k • I}).  

DIAGON'AL JOININGS Agree to let A~,M or just AM denote the M-fold diagonal 

joining defined on rectangles by 

o n 
mE ..M) mE ..M) 

Given a measurable map f :  X --* Y and a measure # on (X, X), let | I l l '  

denote the measure on Y of A ~ #(f-l(A)).  As an example, if ~ is a joining of 

transformation T1 with T2 and if Si • C(Ti), then [$1 × $2]~ is the joining of T1 

with T2 defined on rectangles by 

[SI×S~I¢(AI x As) ~ ~(S~-IA1 × S~-IA~). 

COPIES To speak of self-joinings of a map (T: X, p) it will be convenient to 

use a subscript (occasionally a superscript) within angle-brackets to refer to a 

copy  of a transformation, space, field, measure or joining. Thus one may use 

J(T,T,T) or J({T}am=l) or J({T(,,~)},an=l) to denote the collection of 3-fold self- 

joinings of T. For a ~ • J(T,  T, T),  the field on which ~ lives might be written 

as X(,) x X(2) x X(3) or -by  viewing each X(m) as a subfield of the whole- as 

x<l> v v 

1. Dynamical properties arising from joinings 

In this section we show that for three joinings notions -Rudolph's  m in ima l  self- 

jo in ings  [R], Veech's "property S" [V], also called s impl ic i ty ,  and Furstenberg's 

notion [Fur] of d i s jo in tness  of transformations- that if the property holds up to 

order four, it holds for all orders. 

MINIMAL SELF-JOININGS Suppose ~ is an N-fold self-joining of T. A marginal 

~lI is an off -diagonal  if there exists p: I -* Z such that 
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where M here denotes # I .  An N-fold self-joining ~ is a "product of off-diagonals" 

if the index set [0 .. N)  can be written as a disjoint union 1(1) U 1(2) k_l . . .  such 

that the following holds. 

(i) For each t: ~[t(t) is an off-diagonal. 

(ii) ( is the direct product of these marginals. In other words, the corresponding 

subfields are collectively independent: f f  {V,~e1(t)x(n) [ t = 1,2, . . .  }. 

Products of off-diagonals are called t r iv ia l  N-fold self-joinings and T is said 

to have N-fold  m i n i m a l  self- joinings if JErs({T I n ~ [0 .. N)}) consists only 

of trivial joinings. 

SIMPLICITY Map T is N-fold  s imple  if for each ~ in gErg({T<,,)},) the index 

set [0 .. N)  may be written disjointly as I(1) L/I(2) I_1 . . .  so that - in addition to 

(ii) above- the following holds. For each £: All the X{,), n e I(£), are equal with 

respect to ~. In other words, weaken (i) to 

(i ~) For each £: ~11(t) is a g r a p h  self- joining of T i e . ,  is of the form 

[@nel(t)  R , ] A M  where M *- #I(g) and each Rr, is in the centralizer 

of T. Thus "N-fold minimal self-joinings" is merely "N-fold simple with 

trivial centralizer". 

Dea~nition: Given a collection of transformations {(Tk: Xk, pk)} k, a joining ~ E 

$({Tk}k) is said to be a pa i rwise  i n d e p e n d e n t  jo in ing  if Xj J Xk for each 

pair j ~ k. Further, ~ is the independent joining if ±~{Xk}k. 

A collection {Tk} of transformations is b i - independen t*  if the only palrwise 

independent joining is the independent joining. For a single map T, say that it 

is N-fold bi-independent if the collection N-1 {T(,)},=o is bi-independent. Maps T 

and S are a u t o n o m o u s  if the collection 

{T<0>, S(0), T<I), S<I)} 

is bi-independent. Map T is s e l f - au tonomous  if T and T are autonomous. 
| 

For k = 0,1, suppose that ~k is a joining of measure space (X~,pk) with 

(Y, v). If X0 _1_ y with respect to ~0, then trivially X0 and 2'1 axe independent 

* In general, given a 2-fold property "P", say that a list {T~}k is "pairwise P" if 
for every pair j ~ k the couple (Tj,Tk) has property i v. By way of contrast, 
bi-independence is not a pr/or/ a property verifiable only by looking at pairs of 
transformations. 
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with respect to the relative independent joining ~0 xy (1- The following partial 

converse appears in [J,R]. For completeness we include its brief proof. 

PROPOSITION 1.1 (Jensen's Inequality): Suppose ( is a joining of (X, tt) with 
(Y,u). Let 

p ~ ((o> xy (0> 

be the relative independent (self-)joining of(  over y. Then X(o) ±P X(I) implies 
y± x. 

Proof'. Decompose ( into {(y I Y E Y}, its fiber measures over y .  For any A E X 

this gives, by definition, the first equality below. 

[/y(,(A)du(y)]2 = #(A)2 = /y(y(A)2 du(y). 

The second equality follows from the independence of X(0> and X(1 ) with respect 

to p, since the righthand side is p(A x A). We thus have equality in Jensen's 

inequality and must conclude that the mapping y H (~(A) is constant u-a.e. But 

this is true for every A E X; in particular, for a countable u-dense collection of 

sets A. Thus, after discarding a u-nullset of y, all the fiber measures {(y I Y E Y} 

are identical; hence ( = tt x u. II 

Here is the trick which lifts 4-fold independence to higher order independence. 

FUNDAMENTAL LEMMA: Suppose To and T1 are autonomous. Then for any 

transformation (S: Y) the collection { S, To, T~ } is bi-independent. 

Proof: Consider any ( E J(S, To,T1) for which, with respect to (, 

(1.2) Y-l_ X0, Y3-X1 

(1.3) x0 ± x,  

, ~(0) ((1). (1.2) we _12 for any j ,  k E {0, 1}. and let p = xy From have X~ °) X~ 1) 

Since (1.3)yields that XJ n) .l_ p X{1 n) f e rn  = 0,1, wemay  conclude from autonomy 

that the four fields are collectively independent: 

") I .  = 0,1 =d k = 0,1) .  

Afortiori, then, [X0 V X1] <°) .1_ p [X0 V X~] (0 and so by the preceding proposition 

one may assert 

IX0 v Xl]. 
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This, together with (1.3) yields that algebras y ,  X0 and X1 are collectively inde- 

pendent with respect to ~, as desired. | 

FOUR-FOLD THEOREM 1.4: 

(a )  I[ the collection of maps {TkHk 6 [0 .. K)} is pairwise autonomous then the 

collection is hi-independent. 

In partlcular, a 4-fold hi-independent map (self-autonomous map) is oo-fold 

M-independent. 

(b) If T is 4-fold simple then it is simple of all orders. 

(e) If  T has 4-[old minimal sel[-joinings then it has mh2imal sel[-joinings of a11 

orders. 

Proof: The K = oo case follows from the finite case; assume K < oo. 

For part (a), K = 2 is a tautology. Proceeding by induction, suppose we have 

K + 1 maps To, . . . ,  TK for which every subcollection consisting of K maps is 

bi-independent. In particular, the bi-independence of {T2,.. . ,TI¢,T0} and of 

{T2, . . . ,  TK, T1 } forces any pairwise independent joining of {Tk}g=o to satisfy 

K 

a'i ± V xk, 
k=2 

for i = 0, 1. 

Thus this joining can be viewed as a palrwise independent joining of {S, To, T~ }, 

where S denotes T2 x -.. x TK. But such a joining nmst actually be independent, 

by the preceding lemma. 

Proof of (b,c): Evidently, 4-fold simplicity implies that T is 4-fold bi-indepen- 

dent. Hence T is bi-independent of all orders. 

Take N minimal such that T fails to be N-fold simple. Then there exists ~, an 

ergodic N-fold self-joining of T, which is not a product of graphs. Since N is min- 

imal, no two of the N fields X(,) could be identified under ~. Two-fold simplicity, 

then, implies that ( is a pairwise independent joining. By bi-independenee, ~ is 

the independent joining. | 

DISJOINTNESS In his 1967 paper, [Fur], Furstenberg defines maps T and S to be 

d is jo in t  if J(T, S) consists of only one point, product measure. One nmtivation 

for this was the question: When can the transmitted information be extracted 

from a signal which has been corrupted by noise? If the information comes from 

one kind of process, and the noise from another, then the information can be 
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recovered if the two processes are disjoint in the above sense. There are three 

well-known pairs of classes of transformations which are disjoint: 

K-AUTOMORPHISM ZEROENTROPY 

(1.5) MILDMIXING RIGID 

WEAKMIXING ROTATION 

The first line means that any K-automorphism is disjoint from any map with 

zero-entropy. 

His second motivation was seeing how far the notion of "disjointness" for trans- 

formations emulates "co-primeness" for integers. In particular, PROBLEM B from 

[Fur, p.7] 
If  T is disjoint from $1 and from $2, must it be disjoint from their product 

S1 x S2 ? 

remains open. (The non-trivial case is when three maps are weak-mixing. For 

rotations it is false simply by taking three irrational rotation numbers, pairwise 

rationally-independent, but with the triple rationally-dependent.) Furstenberg's 

question remains open even if one symmetrizes the question and assumes that the 

three maps are pairwise disjoint. However, the application below shows that for 

a mildly stronger form of disjointness - the one which seems to arise in practice- 

pairwise implies collective. 

Say that maps T and S are car tes ian-d is jo in t  if their countable cartesian 

powers T xN and S xN are disjoint. The motivation for this definition is that all six 

classes of (1.5) are closed under countable cartesian power; "ROTATION" meaning 

the class of compact-group rotations, not necessarily ergodic. Consequently, the 

three pairs of (1.5) are cartesian-disjoint. 

DISJOINTNESS THEOREM 1.6: 

(a) If { Tk } k are pairwise disjoint and pairwise autonomous then the { Tk } k are 

collectively disjoint. 

(b) Pairwise cartesian-disjointness ~ collective cartesian-disjointness. 

Proof of(b): Part (a) follows from (1.4a). To justify part (b), suppose T and S 

are cartesian-disjoint. Take ~ a pairwise independent joining of 

(1.7) xN xN xN T0),  S0) ,  T(2), S(2). 

Then we can view ~ as a joining of T xN × T xN with S xN × S xN. But these 

transformations are isomorphic to T xN and S xN respectively. Since the latter 
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pair are disjoint, ~ is the independent joining of the four maps of (1.7). Thus 

T xN and S ~ are autonomous. 

TxN Given a pairwise cartesian-disjoint collection {Tk}k, we conclude that { k }k 

are pairwise autonomous. By (a) then, {TkXN}k are collectively disjoint. | 

Remark: This theorem is applicable in situations not included in (1.5). For 

instance, it is not difficult to build pairs of rigid weak-mixing maps which are 

cartesian-disjoint. Say that {nk}~ ° is a "mixing sequence" for T if #(A f3 T -"~ A) 

p(A) 2 for all sets A. Call it a "rigidity sequence" for S if u(B/x  S-nkB)  ~ 0 

for all B. A consequence of the Mean Ergodic Theorem is the following. 

If there exists a sequence {nk}~ ° which is mix- 
(1.8) ing for T while being rigid for S, then T and S 

are disjoint. 

Hence they are cartesian-disjoint, since {nk}~ ° applies equally well to T ~ and 

S xN. Examples of transformations satisfying (1.8) can be built by simultaneous 

cutting & stacking. | 

Remark: If the direct product T x S of weak-mixing maps is rank-1 then {T, S} 

satisfies a type of disjointness stronger than cartesian-disjointness: Any joining of 

(countably many) powers of T is disjoint from any joining of powers of S, once one 

of these joinings is ergodic; see [F,G,K;§0]. Via simultaneous cutting&stacking 

it is possible to fabricate three weak-mixing maps {Tk}~=~ with Tj × Tk rank-1 

for j and k distinct, for which the Disjointness Theorem provides the only proof 

known that {T1,T2,T3} is triply disjoint. | 

QUESTION The issue of whether pairwise disjointness of three weak-mixing 

transformations implies triple disjointness, remains open. If a counterexample 

exists, one exists with T1, T2 and 7'3 each of zero entropy*. Also, in light of the 

Fundamental Lemma, no pair of the Tk is autonomous. Symmetrizing the argu- 

ment of (1.4a) in the g = 4 case shows: If {7'1, T2} is autonomous and {$1, $2} 

is autonomous, then {T~, T2, $1,52} is hi-independent. A fortiori 

(1.9) If maps T and S are each self-autonomous then {T, S} is au- 
tonomous, 

* This follows from the existence of a maximal zero-entropy factor [Pinsker's theo- 
rem] and -for a positive entropy map- of Bernoulli factors [Sinai's theorem]. 
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So if {T1, T2, T3} are pairwise but not collectively disjoint then some Tk fails to 

be self-autonomous. Which demands the following question. 

Is every weak-mixlng zero-entropy map self-autonomous? 

The hope is to put ourselves out of business with an affirmative answer. Then 

autonomy is vacuously satisfied and 2-fold minimal self-joinings, simplicity, and 

disjointness would imply their infinite order counterparts. 

2. Mixing and rank-1 

The goal of this section is to build a context where the trick of §1 gives "4- 

fold ==3, M-fold" for the property of mixing. 

THE TOPOLOGY OF JOINING-SPACE The tool we will use is the notion of a 

"limit-joining" and for this we will need to topologize the space of joinings. For 

probability spaces (X, #) and (Y, u), let M(#, u) be the space of joinings of the 

two measures # and u. There is a canonical topology on M(#, y) defined by this 

notion of convergence: ~, ~ ~oo if and only if 

limool~.(A × B) - ~oo(A x B)I = 0 

for each rectangle A × B. Since our spaces are Lebesgue, this is a metric topol- 

ogy under which M(#, v) is compact. Letting {Ai}~ ° and {Bk}~ ° be measure- 

theoretically dense collections inside of X and y respectively, the (non-canonical) 

metric 
° 

= ~(Aj x Bk) -- 7(Aj x Bk)[ 
j,k=l 

realizes the topology. This definition generalizes to topologize the space 

M(#I, #2 , . . .  ) of countable-fold joinings, making it compact -which yields the 

following. Agree to use the symbol "3 • #" to mean the measure A ~ 3#(A). 

Given two finite measures A and ~ on tile same space, let "A > ~" mean that 

A(A) > ~(A) for all sets A. 

OBSERVATION 2.1: Fix a joining ~ in M = M( # I , . . .  , #g )  and let F be a closed 

subset of M. Then, the set 

{~ • [o, I ]  13~ ~ F with ~ >_ ~.~} 
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is dosed. 

An example of a closed subset of M(#, v) is J(T, S), where T preserves # and S 

preserves v. For a K-vector v = (v[X],. . . ,v[K]) in 7, xK, let A ~  denote the 

K-fold off-diagonal ET~[1]×... xT È[K]] AK. In the space J(T,..K., T) the set of 

off-diagonal joinings is not closed. Its closure, the set of l imi t - jo in ings  

JLim(T,..K.,T) ~ Closure ( {A~. ] v 6 Z xK } ) 

will play an useful role in the following proof, which serves as a practice run for 

limit-joining arguments. 

MIXING AND RI~NYI-MIXING Recall that T is M-fold mixing if for any choice 

of M sets {Am} 

(2.2) lim #(T-V[1]A1 n . . .  n T-v[M]AM) = # ( A 1 ) ' . . . "  #(AM) 
IMl-*oo 

where v ranges over all M-vectors of integers and Ilvll denotes the minimum of 

Iv[i] - v[j]] taken over all distinct i and j .  

R6nyi, in an elegant Hilbert space argument, showed that the property 

VA: #(A n T-hA)  -} t~(A) 2 

implies the apparently stronger property of 2-fold mixing. With this as inspira- 

tion, say that T is M-fo ld  R 6 n y i - m i x i n g  if (2.2) holds whenever A1 . . . . .  

AM. 

THE LIMIT-JOINING CHARACTERIZATION OF MIXING The Hilbert space argu- 

ment does not seem to work immediately for M > 2. However, by viewing mixing 

as a statement about limit-joinings, a brief argument demonstrates that M-fold 

R6nyi-mixing implies M-fold mixing. 

For a sequence of M-vectors vl ,  v2 , . . .  E Z xM whose corresponding off-diago- 

nal limit A ~ limn A ~  exists, say that A is a "non-trivial" limit-joining if HVn 1[ 

oo. This gives the following characterization. 

A transformation T is M-fold mixing if and only 
if every non-trivial Emit-joining is M-fold prod- 
uct measure. 

The "if" direction follows from the compactness of 5(T, .m.., T). 
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THEOREM, 2.3: "Any joining which looks like product measure on cartesian 

power sets is product measure." Fix a weak-mixing T and a na tu re /number  M. 

If a joining A E J({T(m) [ 0 _< m < M}) is such that 

(2.4) × × A) = [,(A)] M, for each set A, 

then A is M-fold product measure, itxM. 

Proof'. If false, then A must fail to be absolutely continuous with respect to 

product measure, since the latter is ergodic. Thus there can exist no bound K 

such that A(B) _< K • #×M(B) for all sets B E x×M; indeed, this inequality 

must fail for some rectangle. Setting K 2_ M M, then, there must exist sets 

A1, . . . ,  AM E ~" such that 

A(A1 x . . .  x AM) > M M.itxM(A1 x . . .  × AM). 

Pick e sufficiently small that if we discard from each Am any set of mass less 

than e, then the above inequality persists. Thus, we may assume that for each m 

the value #(A,n) is a multiple of ~. 

Now partition each A,n into disjoint pieces of mass e. Evidently we can choose 

a piece from each Am and call it Am so as to have the foregoing inequality 

persist. The improvement is that, now, it(A1) . . . . .  #(AM). So we can set 
E 4 M 

= U m = l  Am and compute 

A(E x . . .  x E) > A(A, x . . .  x AM) > M M' i t (A1) ' ' ' i t (AM)  
Y 

M times > MM " it(E) it(E) = it(E)M 
- M M " 

But (2.4) flatly contradicts this. I 

COROLLARY 2.5: If T is M-fold Rdnyi-mixing then it is M-fold mixing. 

The proof of (2.3) actually establishes the following inequality between joinings 

of measures. 

LEMMA 2.3Q Suppose A E M(it, .M.,#) and set 

Bo -~ sup A(A x . . .  x A)/it(A) M, 
A 

where the supremum is taken over all sets A with positive mass. Then 

A <_ BoM M * #xM. 
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HIGHER ORDER MIXING FROM LOWER ORDER In [Ka] Steve Kalikow proved 

that for rank-1 Z-actions, 2-fold mixing implies 3-fold mixing. He informs me 

that the same method, plus elbow grease, yields mixing of all orders. 

We hope to prove a related theorem for ZD-actions (Corollary 2.9) by combin- 

ing the results of §1 with the methods of [K,§3]. Since our methods need 4-fold 

mixing to get started, our results are weaker than Kalikow's--however, they are 

not contained in his theorem even in the D = 1 case. Concisely, but imprecisely: 

Suppose T is a ZD-action which is (su~ciently close to being) rank-1. If  T is 

4-fold mixing then T is mixing of all orders. 

This holds also for RD-actions and should work for actions of a large class of 

amenable groups G. At issue is what "rank-l" should mean. That T has a gener- 

ating sequence of Rohlin stacks indexed by Folner sets is too permissive--indeed, 

that definition should be the amenable group version of Jean-Paul Thouvenot's 

notion "funny rank-l",  [Fe], which is qualitatively more general than rank-1. 

Moreover, in the proof of our Proposition B, the geometry of individual FOlner 

sets will turn out to he important. It is for this reason - to  avoid stating our 

result with complicated hypotheses on the shapes of F¢lner sets- that we use 

G = Z D, where the standard notion of rank-1 uses well-understood F¢lner sets: 

rectangles. Nonetheless, those arguments which work just as easily for general 

Abelian groups will be stated that way. In particular, we take pains to avoid 

using the Pointwise Ergodic Theorem which, unlike the Mean Ergodic Theorem, 

does not hold for arbitrary F¢lner sequences. 

GROUP ACTIONS Suppose (G, ~,7/) is an Abelian locally-compact topological 

group with r/(.) the invariant Haar measure, ~ the Borel field, and 0 the identity 

element. A ~-action on probability space (X, X, p) is a measurable map 

T : G x X ~ X  

which, agreeing to write T~(-) for T(v, .), satisfies: T ~ is a measure-preserving hi- 

jection of(X,  X, p) and T v o T w = T ~+w/'or all elements v, w E G. In particular, 

T ° is the identity transformation. 

ERGODICITY For a G-action, saying that a set, function, subfield or joining is 

"T-invariant" shall mean that it is T~-invariant for each v E G. The ergodic 

decomposition theorem holds; see theorem 1.7 of [J,R]. The corollary we need 

from this concerns invariant (probability) measures: I/' Pl and #2 are T-ergodic 

measures on (X, X)  which are unequal, then they are mutually singular. 
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JOININGS The vocabulary of joinings carries over unchanged to general group 

actions. The centralizer C(T)  is the set of transformations S such that T~S = 

S T  ~ for every v E G; if each such S is some T ~ then T has t r iv ia l  cent ra l izer .  

The collection J (T ,  S) of joinings of two G-actions is the set of ~ E M(p,  v) 

such that the equality IT ~ × S~]~ = ~ holds for every v. The aforementioned 

ergodic decomposition theorem implies, T and S being ergodic G-actions, that 

the ergodic components of a joining ~ E J (T ,  S) are themselves joinings. Thus, 

every element of $ ( T , S )  is an average of members of JErg(T, S). 

MIXING FOR G-ACTIONS For T to be weak-mixing means that T x T is ergodic. 

Given a sequence {v,,},°°= 1 of elements of G, let "v,  --~ oo" mean that for each 

compact E C G there exists N such that vn E E c for all n exceeding N. Let 

aN(T)  denote the degree of pa r t i a l -mlx lng  of T; the maximum a E [0,1] so 

that for all K-fold rectangles 

liminf p(T-~P]A~ n . . .  n T-~[~A~¢)  >_ a .  p ( A 1 ) . . . . ,  p (AK) .  
IIvll--.oo 

The expression "][v]l --* oo" is a shorthand which means: For i and j distinct, the 

difference v[i] - v~j] is eventually outside of any given compact set. T is K-fold 

mixing if a g  ---- 1; equivalently, if the above liminf is a limit and equality holds 

with a = 1. 

ALL PREVIOUSLY DEVELOPED JOINING RESULTS HOLD FOR G-ACTIONS Re- 

placing the word "transformation" by "G-action", the results of FUNDAMENTAL 

LEMMA, FOUR-FOLD THEOREM, DISJOINTNESS THEOREM as well as the R6nyi- 

mixing result, remain true. All the arguments heretofore are abstract and use 

nothing about  the acting group. Indeed, all that one needs for G-actions is that 

the relative independent joining over invariant fields is invariant and that the 

ergodic decomposition theorem holds. 

Theorem 2.8 is the goal of the next two sections, whose proof consists of two 

limit-joining arguments Propositions A and B below. Note that an off-diagonal 

joining A~¢ is unchanged by adding a constant vector ( c , . . . ,  c) to v and so the 

joining is completely specified by knowing its "difference function" 

e( i , j )  4_ v[i] - v[j] for i , j  E [1 .. g ] .  

Conversely, given a function e(., .) such that e( i , j )  + e(j, k) + e(k, i) is always 

zero, and given a subset I C [1 .. K], let A~('") denote the off-diagonal joining ~ o n  I 

~@,e:  T~[']] A #  z" 
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PROPOSITION A: For any limit-joining )~ E JLim(T, ..K., T) there exists a trivial 

K- fo ld  joining r such that 

a g ( T )  • r < ,~. 

Proof." Suppose ,X is the limit-joining A~. ~ lim,--.oo "" " = A K ,  where ~' = {s,,}~' 

and each s,~ is a K-vector with components sn[i] E G. By the local compactness 

of G, we can subsequence on n to arrange that now tile {s,,}~ "converges" 

coordinatewise. That is, we can write the index set [1 .. K] as a disjoint union 

[I/4 so that: For each I, J E/4, for each i E I and j E J,  

If I = J :  e ( i , j )  '~ l h n (  = s,[i] - s,,~j]) exists; 

If I # J :  lhnoo (sn[i ] - s,,[j]) = oo. 

The upper line says that the marginal A~]! equals A*('") The lower line and a ~ o n  I " 

short argument yield 

A t > o~#u(T)• r, where r = ( ( ~ )  A~('")'~ 
- -  "~"aort I ,]" 

I: IEH 

Since #/4 < K,  certainly a # u  dominates O~K, completing the proof. | 

RANK AND C O V E R I N G  NUMBER Henceforth G = Z o, for some fixed natural 

number D. A rec tangle  R C Z D is a set of the form 

(2.6) [ a l . . b l ) × " . × [ a D . . b D ) ,  with 0 < gd < cx~ 

where g a ~  ba - aa. Let len(R) denote the nfininmm of {gl , . . .  ,ga}. A sequence 

1~ = {R,,}~ is a F¢ lne r  sequence  if len(R,) ./" oo. A set -- C X is an R-s tack 

if it is a disjoint union 

Z =  [ j  T°(B) 
vER 

with #(B) > 0. The set B is called the base of ;=. Doing double duty, the 

symbol "E" will also denote the pair (R, B). A (measurable) set A C -" is "E 

measurable" if for some set E C R 

a e l l  ( A ~  T v B),  

vEE 

where B = Base(E). 

Say that A' C X is "s-E-measurable" if there exists a ;=-measurable A with 

#(A' A A) _< a. 
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A pair (1~, ~) is "good" for T if it satisfies: ~,, is an R,-stack, t~ is a Folner 

sequence, and the stacks local ly g e n e r a t e  in the sense that given any ¢ and 

A E X :  

For all large n, the intersection A N ~ .  

is ¢-En-measurable. 

We can always drop to a subsequence so as to assume the limit p(~) --* 

lim,-.oo #(~,~) exists. Note that when "dropping to a subsequence", we renum- 

bered the indices as n = 1,2,3, . . . .  This renumbering will be done without 

announcement in the sequel. 

The cover ing  n u m b e r  of T, a number in [0,1] and written ~;(T), is the supre- 

mum of #(~) taken over all good pairs (I~, ~) for T. By splicing sequences one 

sees that there exists a good pair for which *;(~) = ~(T); such a pair will be 

called a cover ing-pa i r .  Finally, T is rank-1  if ~(T) = 1. Any rank-1 action is 

ergodic. 

Remark: By perturbation of Ornstein's random spacer technique of [0] one can 

make a mixing zD-action with any prescribed covering number. | 

In [K] appears a connection between covering number and a more familiar 

invariant: For an Z-action T, its spectral multiplicity is dominated by 1/~:(T). 

USING MINIMAL SELF-JOININGS TO LIFT MIXING The strategy for getting M- 

fold mixing from 4-fold is shown in diagram 2.7. 

/.-fold mixing I I---fold MsJI 
T Trick 

[4-fold mixing ] ra.nk-, , [4-fold MSJ I 

FIaURE 2.7. The upper implication is the observation that any 

non-trivial M-fold limit-joining is pairwise independent. By M- 
fold minimal self-joinings, each of its ergodic components is product 

measure--hence it itself is product measure. 

The next several remarks, to be proved later, establish the lower implication. 

PROPOSITION B: Suppose positive integers M and K satisfy 

M . ~ ( T )  > K -  1. 
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Then any ~ E JErg (T, .M., T) has a K-fold marginal -calI it ~- so that 

( 
for some limit-joining A E lLim (T, ..K., T). 

MAIN THEOREM 2.8: Suppose Mtc(T) > K - 1. / f  

( ~ -  V ( K -  1 ) / M ) ~ + ~ K ( T ) >  

then any ergodic M-fold self-joining ~ has a trivial K-fold marginal. In particular, 

this conclusion holds as soon as T is K-fold mixing. So if, in addition to K-fold 

mixing, 
1 

> 1 - 

then T has K-fold minimal self-joinings. 

COROLLARY 2.9: Suppose T is rank-l, or even just has t:(T) > 3/4. I f T  4-fold 

mixes then T is mixing of all orders. 

Proof of Main Theorem: From Proposition B, then A, we obtain a K-fold 

marginal ~', limit $ and trivial joining r such that 

a ~ o r  _< 

where/~ abbreviates the complicated constant of Proposition B. By hypothesis 

aK is positive and so T is weak-mixing and all trivial self-joinings are ergodic. 

Hence ergodic joinings ~" and r are either mutually singular or are equal. But 

l~ + aK strictly exceeds 1, so there is no room in the ergodic decomposition of 

for them to be mutually singular. II 

Establishing Proposition B is the task of the next several lemmas. 

PARTITIONS AND GENERIC POINTS Given a partition P on X, let P(z)  denote 

the atom of P containing z. The P-name of a point z is the mapping v ~ z[v] 

where z[v] 4= p(Tvz)" Say that an R-stack -2 is P -monochromat i c  if two 

conditions hold: Each level TV(Base Z), where v E R, is entirely contained in 

some atom Av E P. And the only points z with the same P-name as the stack, 

meaning z[v] = A~ for all v E R, are those z in the base of E. 

It is not difficult to check the following (see [K,1.4]), whose purpose is to remove 

an "~" from a later argument. 
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MONOCHROMATIC LEMMA: IfT ergodic then there exists a countable generating 

partition P and covering-pair (R,-E) with each stack monochromatic. 

For F¢lner set R and function f let "R'f denote the average ~ ~'~vCR T~f,  

where TVf is the function z ~ f(TUx). 

MEAN ERGODIC THEOREM: Suppose T acts ergodically on X.  Then for any 

F¢lner sequence R and any function f E L2(p), 

The mean ergodic theorem is enough to imply that a.e. z is "P-generic" in the 

following sense: Given a F¢lner sequence 1~, we can replace it by a sufficiently 

sparse subsequenee so that a.e z is l~-generie for #: For every P-cylinder-set A, 
oo. ,  

R.1A(Z) --, #(A) as n ~ or. 

INDEPENDENT SETS The following elementary lemma appears in [K, 3.3]. For 

a subset S C N let Den(S) and Den(S) denote its upper and lower density; 

the limsup,~ mad liminf, of ~[S N [1..n][. Say that partitions P and Q are 

"independent upto ~f", P ±6 Q, if 

~'-~A,B [i'(A n B) - u(A)#(B)  I _< 

with the summation taking place over all A E P and B E Q. In assertions 

involving ,,±6, it will be convenient to regard any subset E C X also as the 

two-set partition (E, _-.c). 

APPROXIMATE STRONG LAW OF LARGE NUMBERS: In probability space (X, #) 

suppose {En } ~o is a sequence of sets satisfying the following for any ~ > 0 and No. 

For a/l large N: 
N 0  

Vz.. 
n----|  

Then we can drop to a subsequence of the {En}n and delete a nu//set from X to 

obtain: For a/l z E X, 

Den{n [E, ,  ~ z} >_ l i m i n f # ( E , ) .  
~ ='=*OO 

The Mean Ergodic Theorem implies the following. 
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LEMMA 2.10: T an ergodic action and ~ > O. For any positive 8 and set A there 

exists L so that: Whenever E is an R-stack with len(R) > L and #(E) > to, then 

-- A. 

For R as in (2.6), let R + and R -  represent the disjoint (possibly empty) sub- 

rectangles 

R + =~ Rn [0..OO) ×D 

R- -~ R N (-oo.. O) xD 

Let - +  abbreviate the union of levels UvER+ T ° ( B a s e - ) ,  with the analogous 

meaning for F.-. 

SETTING UP THE ARGUMENT Fix, henceforth, a P and (R,F_.) as in the Mono- 

chromatic Lemma. A w o r d  W is a map from some rectangle E to the alphabet P.  

Given another word W: E ---} P,  measure the coverage of W by W, written 

~;(W on W), by the maximum of 

over all collections ]) with: The translated sets {E + v},,ev are disjoint and 

contained in ~3, and each satisfies WIE+~ = W. 

Proposition B asserts an inequality between two joinings. One way to prove an 

inequality between two measures is by means of generic points. The t~ sequence 

will be used to study ~. But we also need to examine #, so fix a Folner sequence 

I3 = {Bt}~ ° for which, without loss of generality, 

For ali z E X ,  z is generic for #. 

Here, and subsequently, an unadorned "generic" means t3-generic for #. Finally, 

viewing a name z as an infinite rectangle, define 

~:(W on z) ~ lim ~(W on Z[Bt) 
t----*oo 

A monochromatic R-stack E has a word W as soc i a t ed  to  it, 

w (  ) ° p (  (B .=)) v = T v ase 

for v E R. By our second condition defining monochromaticity 

on z) = v(=). 
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Proof  of Proposition B: Henceforth x will denote x(T). Take ~ E (0, 1) so that, 

(2.11) MeDic > K - 1. 

Since our arguments will only use the Mean Ergodic theorem and not the point- 

wise theorem, we can freely replace each R ,  by a convenient translation of itself: 

Arrange that any side [ad .. bd) of a rectangle has approximately an e fraction of 

its length negative, in ( -oo,  0). So 

(2.12) lira 7/(R~) _ eo  and lim 7/(R+) - (1 - e)D. 
,--.oo ~/(R,) ,--.oo ~/(R,,) 

Since (TXM: ~) is ergodic and I~ + " + oo = {R. }n=a is itself a Folner sequence, we 

may drop to a subsequence so that 

For (-a.e. point x E X ×M, x is t~+-generic for 

on pxM.  Of course, this property persists under dropping to a further subse- 

quence. 

Since {R~}~ ° is a Folner sequence we can, courtesy lemma 2.10, drop to a 

subsequence satisfying 

For all 6 and No, for all large N: --- .l_ 6 V N° 
~ N  n = l  ~ r t  • 

This entitles us to the conclusion of the Approximate Strong Law of Large Num- 

bers. Since liminf, #(E~') dominates liminf, c t # ( ~ , ) ,  we can delete a #-nullset 

from X to obtain the following. 

For all x E X: Den{n [x E -=~} _> eD~. 

OBTAINING THE MARGINAL: Fix forevermore a point x = (x[1], . . . ,x[M]) 

which is I~ +- generic for ~. There are "M choose K"  distinct K-tuples in [I .. M]. 

From the above inequality there exists a subset I C [1 .. M] of cardinality K 

fulfilling 

By (2.11) the righthand side is positive. This gives us a candidate K-fold mar- 

ginal; set ~'-~ ([z. 
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Rename the K points {x[i]  I i E I} as ~ =~ (£[1], . . . ,  £[K]). Thus 

is an l~+-generic point for ~'. 

Furthermore, since the set on the lefthand side of (2.13) is infinite, we can sub- 

sequence and assume 

(2.14) For all n and for all k E [1 .. K]: £[k] e E~. 

THE SHIFT VECTOR: For the moment, fix n and let the subscript n become 

implicit in symbols R,,R~+,E, etc. Define the kth shift  s[k] to be the element 

of R -  such that 

~[k] E Tdk](BaseE) 

and set s =4 (s[1], . . . ,  s[K]). Let z be 211] and z be 

(z, T °[2]-'[11 z , . . . ,  T °[K]-°[ll z). 

Since z is a generic point for p, 

z is a generic point for A~.  

Let W be the word associated to E. Define W + ~ XlR+. Notice from (2.14) that, 

for each shift, the translation R -  s[k] contains R +. By consequence, z]a+ = W + 

and 
~/(R+)~(W on z) = ~}(R+) "-" ~(w+ on-.) >_ ~ ,  ~(R) ~t-J = ~(--+). 

Now fix a pxK-word A. Then 

A~(A) = ~(A on z) > ~(A on W+) • ~;(W + on z) 

> ~(A o n  w+). ~,(-+). 

SENDING n TO INFINITY: Rematerializing the subscript n we have 

A~(A) > ~(A on ~[R~+)" ~(Z+)" 

By subsequencing, A ~ lim, A~ exists. Since ~ is l~+-generic for ~', 

and ,(z +) -~ (1 - ~)o. ~, by (2.12). Th,s ~(A) > ~'(A). (1 - ~)~, for e~a~ A. 

The upshot is that 

(*) ~ > (1 - ~)D~. ~I,. 
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FINAL STEP: The above reasoning holds for each ~ satisfying (2.11); that is, 

with 

> ~ / (K  - 1)/Mt¢. 

For each such e there a cardinality K subset I C [1 .. M] and limit-joining A for 

which (*) holds. 

Since there are but finitely many possible subsets I ,  we can take a sequence 

of ~ "N ~ / ( K  - 1)/Mt¢ with a constant value for I. Now, since the collection of 

limit-joinings is a closed set, (2.1) gives us a limit-joining A fulfilling (*) with 

actually equal to ~/ (K  - 1)/Mt¢. This establishes Proposition B. II 

QUESTION "Rectangleness" of our F¢lner sets was used in (2.12) to control the 

Haar measure of R + and R -  relative to R; no conclusion results if the Folner 

sequence decays, r/(R+)/t/(R,,) ~ 0 or t/(R~)/T/(R,,) ---* 0. What  geometric prop- 

erties of a Folner sequence l~, such as convexity conditions on the R,,, determine 

whether subset sequences I~ + and 1~- can be chosen which do not decay? That  

each R,t tiles the group is not sufficient, even when G = 25. 

One context in which the proof goes through, mutatis mutandis, is when G 

is a finitely-generated group with polynomial growth and R,, consists of those 

elements which are products of at most n generators and their inverses. 
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